

Development of Primary Certified Reference Materials (PCRM[™])

Primary SI Traceable Solution Standards For Iridium and Osmium

Madeline Gozzi, R&D Chemist

What is a Primary Solution Standard?

Measured value is obtained by means of a **primary reference measurement procedure**. ^{1, 2}

Gravimetry, or measurement by weight, is a primary measurement procedure.

- 1. VIM_JCGM_200_2012, section 5.4
- 2. VIM_JCGM_200_2012, section 2.8

WINTER MEETINGS 2023 PROCEEDINGS

What is SI Traceability?

Your measured value is linked or traced to the International System of Units, the SI.

The SI was established in 1960.

There are 7 base units in the SI.³

Base Quantity	Base Unit	Symbol	
Time	Second	S	
Length	Meter	m	
Mass	Kilogram	kg	
Electric Current	Ampere	A	
Thermodynamic Temperature	Kelvin	К	
Amount of Substance	Mole	Mol	
Luminous Intensity	Candela	cd	

Our **primary measurement procedure** was **Gravimetry**, or measurement by weight.

The kilogram (kg) is one of the 7 base units of the SI.

Thus, we obtain traceability to the SI through the kg.

Why develop a primary SI traceable solution standard?

Ensure the accuracy of our Os and Ir Certified Reference Materials (CRMs).

No National Metrology Institute (NMI) has an SI traceable solution standards for Os and Ir.

Why develop a primary SI traceable solution standard?

- ISO is the International Organization for Standardization.
- Accreditation to the ISO 17034 and ISO 17025 standards is essential for a CRM manufacturer .
- Primary Requirement: Metrological traceability to the SI.

Requirements for SI traceability?

Purity Analysis of the candidate Starting Materials

Starting Materials

Candidate SI traceable starting materials

• Os and Ir salts:

- Ammonium
 hexachloroosmate
- Ammonium hexachloroiridate hydrate

High purity Os and Ir metal powders

Experimental Design

Followed the approach used by Beck, Salit et al. at NIST when they developed the Rh SRM.¹

Determine the Os or Ir mass fraction in the candidate metal salt.

- · Gravimetric Reductions of the salt to the metal
- Establishes SI traceability of the candidate starting material

High purity Os or Ir metal powder

- An independent source of Os or Ir
- Used as a standard for comparison

¹Beck, C. M., II; Salit, M. L. Preparation and Certification of a Rhodium Standard Reference Material Solution. Anal. Chem. 1993, 65, 2899– 2902, <u>https://doi.org/10.1021/ac00068a030</u>

WINTER MEETINGS 2023 PROCEEDINGS

Eliminate Systematic Errors

Major Systematic Errors

- Exposure to air/moisture
- Static

Gravimetric Reduction

- Reduce the starting material, Os or Ir salts, to Os or Ir metal under H₂ at high temperature.
- Weighing, gravimetry, is the primary measurement procedure.
- SI Traceability: through weighing the salt and metal gravimetric reduction products.
- Determine the mass fraction of metal in the salt.

Dissolution of the Metal

WINTER MEETINGS 2023 PROCEEDINGS

NaOH / NaNO₃ Fusion

Sample Os⁰ weighed into quartz crucible NaOH and NaNO₃ added on top of the sample NaOH and NaNO₃ almost completely melted NaOH and NaNO₃ completely melted, metal fully dissolved

Purity Analysis: Requirement for Establishing SI Traceability

- Trace metallic Impurities (TMI) analysis was performed on solutions of the candidate SI traceable salts
- Inert Gas Fusion analysis was performed to determine estimates of the O, N, and H impurities.
- The combined impurities from TMI and IGF analysis were applied as corrections to the mass fraction of Ir or Os in the starting material

ICP-OES Comparison

The metal mass fraction in the salts was found by Gravimetric Reduction.

- Highly reproducible results
- The accuracy of the results must be confirmed.

ICP-OES Comparison of Solution Standards

Solution standards are made from the two independent starting materials.

- Solution standards are made from the candidate SI traceable salt.
- The comparison solution standard is made from the dissolved high purity Ir or Os metal powders.

Periodic Table of the Elements

ICP-OES Comparison of Solution Standards

- Accurate matrix matching and/or internal standardization of SI traceable solution standard to comparison solution standard
- Careful monitoring of metal washout
- Natural aspiration function of the nebulizer
- Large number of replicates
- Bracketing of samples

Atomic Number \rightarrow Name \rightarrow Hydrogen 1.008 \leftarrow Atomic Weight 13 14 15 16 17 Hydrogen 1.008 \leftarrow Atomic Weight 13 14 15 16 17 Name \rightarrow Name \rightarrow Hydrogen 1.008 \leftarrow Atomic Weight 13 14 15 16 17 Name \rightarrow Name \rightarrow Name \leftarrow Atomic Weight 13 14 15 16 0 Name \rightarrow Name \rightarrow									9 Fluorine 18.9984031				
		6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	Aluminium 26.9815385	Silicon 28.085	Phosphorus 30.973761998	Sulfur 32.06	Chlorine 35.45
	23 Vanadium 50.9415	24 Chromium 51.9961	25 Manganese 54.938044	26 Fe Iron 55.845	27 Co Cobalt 58.933194	28 Nickel 58.6934	29 Cu Copper 63.546	30 Zn Zinc 65.38	31 Gallium 69.723	32 Gee Germanium 72.630	33 Ass Arsenic 74.921595	34 Selenium 78.971	35 Br Bromine 79.904
	41 Nb Niobium 92.90637	42 Mo Molybdenum 95.95	43 TC Technetium (98)	44 Ru Buthenium 101.07	45 Rh Rhodium 102.90550	Palladium 106.42	47 Ag Silver 107.8682	48 Cd Cadmium 112.414	49 In Indium 114.818	50 Sn Tin 118.710	51 Sb Antimony 121.760	52 Tellurium 127.60	53 Iodine 126.90447
Hf Hafnium 178.49	73 Ta Tantalum 180.94788	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 OS Osmium 190.23	77 Iridium 192.217	78 Pt Platinum 195.084	79 Au Gold 196.966569	80 Hg Mercury 200.592	81 Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98040	84 Polonium (209)	Astatine (210)
4 Rf therfordium (267)	105 Db Dubnium (268)	106 Sg Seaborgium (269)	107 Bh Bohrium (270)	108 Hs Hassium (269)	109 Mt Meitnerium (278)	110 DS Darmstadtium (281)	III Roentgenium (282)	Copernicium (285)	113 Nh Nihonium (286)	114 Flerovium (289)	Moscovium (289)	Livermorium (293)	117 Ts Tennessir (294)

ICP-OES Comparison Results

- Results for candidate SI solution standards were < 0.1% from the calculated values.
- Demonstrated the accuracy of the candidate SI traceable solution standards.
- The high precision of the analysis lowered the ICP-OES uncertainty.

Uncertainty Estimates

- ISO 17034 and ISO 17025 accreditation requires reporting the uncertainty in a certified value
- Make uncertainty estimates using:
 - Cause and Effect diagrams
 - Error budget analysis.

Uncertainty Estimates

Cause and Effect diagram

Uncertainty sources in the preparation of the Os Solution standard in 15% v/v HCl.

Uncertainty Estimates

Error Budget Analysis

	Error Budget Contributions: Preparation of Os Solution Standard in 15% v/v/ HCl	Individual Uncertainty Contributions (u _x)	Value (X)	Relative Uncertainty = (u _x / X) ^{^2}
GR assay uncertainty (NH₄)₂OsCl₅	Precision of GR assay			1.27E-06
Purity (NH₄)₂OsCl ₆	Purity	0.0002	0.9979	4.02E-08
Mass (NH₄)₂OsCl₅ (g)	Weight of NH₄)₂OsCl ₆	0.0001g	1.16g	4.95E-09
Mass (NH₄)₂OsCl₅ solution (g)	Weight of (NH ₄) ₂ OsCl ₆ solution	0.02g	500g	1.07E-09
	CRU = Combined Relative Uncertainty = $(\sum (u_x/x)^{2})^{0.5}$			1.15E-03
Expanded Uncertainty of Characterization	Expanded Uncertainty = 2 * Os (μg/g) * CRU = 2*1000*0.00115			2
	Os (µg/g) Calculated			1000

Error Budget for the Preparation of the Os Solution Standard in 15% v/v HCl

In Summary

Primary SI traceable solution standards for Os and Ir

Certified Value (µg/g) ± Expanded Uncertainty (µg/g)

Low uncertainties: fit for purpose as Calibration Standards

ISO 17034 and ISO 17025 accreditation